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Knowledge Graphs

• Facts represented in form of triples

• Entities are labeled with attributes (e.g., types)​

• Typed edges between two nodes capture a 

relationship between entities​

• Usually based on an underlying schema
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A knowledge graph (KG) is essentially a large-scale semantic network that contains 

entities, concepts as nodes and relationships among them as edges. 



Knowledge Graphs 

Examples - DBpedia, Yago, Google 

Knowledge Graph, Amazon Product 

Graph, IBM Watson..

Applications are widespread 

• Question answering

• Chatbots

• Recommendation systems

• Web search 

• ..
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• Key idea - to generate representations of nodes that depend on the structure of 

the graph, as well as feature information

• Representations for machine, not human

• Shape of embeddings – vector with floats as an element

Representation Learning with Embeddings
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• Embed components of KG (entities, relations) into 

continuous vector spaces 

• Allow easy manipulation of data while preserving 

inherent structure of KG

• Capture the interactions between entities of KG

• Used for link prediction towards KG completion 

o <v, r, ?>  or  <?, r, u>
Translation based 

KG embedding

KG triple <v, r, u >

Representation Learning with Embeddings
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• Many embedding models

o TransE 

o RESCAL 

o DistMult 

o ComplEx

o ConvE

o …

• Several new models being proposed every year ..
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Popularity of KG embeddings



• KG embeddings mainly used for link prediction, KG completion (Wang et al. TKDE 2017)

• KG embeddings are also being explored for various semantic tasks 

o Entity similarity (Sun et al. VLDB 2020)

o Relation similarity (Kalo et al. ISWC 2019)

o Conceptual clustering (Gad-Elrab et al. ISWC 2020)

o Rule-based reasoning (Ho et al. 2018)

• All attempt to leverage semantic knowledge encoded in embeddings

Applications are widespread..
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Premise:  Vectors of entities, relations should reflect their latent semantics

Similar entities           E1,  E2,  E3 

KG Embedding vectors  e1,  e2,  e3 

Expected to be similar
mapping

Do embeddings represent semantics ? 
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Expectation vs. Reality

Entity similarity reflected 

by vectors
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Fine-grained semantics 

not reflected*

*Nitisha Jain, Jan-Christoph Kalo, Wolf-Tilo Balke, Ralf Krestel: Do Embeddings Actually Capture Knowledge Graph 
Semantics? ESWC 2021.



Objectives 

• Comprehensive analysis of characteristics of the latent vectors from KG 

embeddings 

• Quantitatively measure their ability for semantic representation

• Explore the reasons for shortcomings
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How to measure semantic expressiveness? 

• Can vectors express similarities between entities of same type?

o Classification

o Clustering

• Entity Classification

o Assign entities to their types 

• Entity Clustering

o Identify entities belonging to the same type

• Suitable for semantic analysis: simple and can identify salient 

features of the embeddings, if any

13



Dataset Preparation Yago3

• Goal: Extract entities belonging to classes at different levels of ontology 

• Sub-trees explored manually, most frequent classes chosen

• Experiments consider entities from same level of granularity for fair comparison 
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Level 2
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Level 3

Thing
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writer



Experiments

• Embeddings: TransE, RESCAL, ComplEx, DistMult, ConvE (LibKGE library), 

RDF2Vec

• Non-Embedding Baseline:  Entity typing with SDtype [Paulheim et al. 2013]

o Heuristics based technique relying on statistical distributions of the 

entity links

o Robust to noisy facts, agnostic to existing type information

• Classification: KNN, Multilayer Perceptron, Random Forest
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Classification Results 

F1 measure for Yago Dataset 
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Why is it so ? Deepdive Analysis

• Semantic understanding depends on dataset 

o Real-world entities frequently belong to more 

than one semantic type or class

• Most relations are neither unique nor indicative of any 

single class in particular: bornIn, hasSpouse, isCitizenOf 

..
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Expectation vs. Reality

Entity similarity reflected by 

vectors
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All people are similar ! 



Major Insights 

Assumption: KG embeddings represent the semantics for KG components well

Findings:

• Semantic soundness is restricted to few entities, dependent on the dataset

characteristics

• Simple heuristics-based approach can derive the semantics directly from

KG triples without any additional information
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So where do we go from here..

• Need for wider analysis, proper inspection of the advantages,
weaknesses of KG embeddings

• Perform well for link prediction, but generalizability of these
models for semantic tasks deserves more attention

• Lack of interpretability, lack of transparency in KG embeddings

• Ontology and reasoning can help with improving the semantics of
embeddings
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Improving KG embeddings with Ontology

• Lack of ontological knowledge during training, incorrect predictions.

• Proposing ReasonKGE to detect semantically incorrect predictions via ontological reasoning,

generate targeted negative samples for the next iteration of training.
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• Improved link prediction 

performance, as well as the 

ratio of semantically

consistent predictions for any 

underlying embedding model.

*Nitisha Jain, Trung-Kien Tran, Mohamed H. Gad-Elrab, Daria Stepanova: Improving Knowledge Graph Embeddings 
with Ontological Reasoning. Proceedings of the International Semantic Web Conference (ISWC), 2021.
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• Cultural facts can acquire multiple representations simultaneously

• Input: Music, Text, Formal/structured databases, Images

• Mapping into Multisensory experiences: visual, auditory, touch

• Inclusion by access technologies and co-creation by those with 

challenges to sight and/or hearing (i.e. evaluation)
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MuseIT



Objectives

• To investigate statistical and semantic models for multisensory 

representations of Cultural Heritage (CH).

• To devise innovative methodologies to transform CH modalities and 

generate them automatically from existing ones with machine learning 

and crowdsourcing.

MuseIT
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Learning Quality Dimensions in Vector Spaces

• The dimensions of learned vector spaces do not normally correspond to 

semantically meaningful properties.

• This limits the interpretability of learned vector space representations.

• Previous work* on mitigating this issue - identify interpretable directions in 

learned vector spaces. 

• These interpretable directions can then play the role of quality dimensions.

*Joaquín Derrac and Steven Schockaert. Inducing semantic relations from conceptual spaces: A data-driven 

approach to plausible reasoning. Artif. Intell., 66–94, 2015.
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Interpretable directions within a 2d projection of vector space embedding of movies (IMDB)
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Learning Quality Dimensions for KG embeddings

• The central aim is to decompose the given vector space into a number of lower-

dimensional spaces, each of which captures a different aspect of meaning.

• For KG embeddings, dimensions could correspond to the attributes of entities.

○ E.g., Movie entities - attributes could be awards, cost ..

○ Artist entities - attributes could be art style, nationality ..

• This would increase semantic interpretability of the vectors.

• Potential use case for MuseIT - Enable completion of missing attributes of entities,

especially helpful for multimodal embeddings.
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Multimodal Knowledge Graphs
Multimodal Representations of CH Assets



Multimodal Information
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• Real world is inherently heterogeneous.

• Most existing knowledge graphs are represented with 

pure symbols denoted in the form of text.

• Weakens the capability of machines to describe and 

understand the real world.

• Establish the connection between the symbol `Dog’ 

and the experience of dogs, i.e. grounding a symbol 

to its physical world meaning.

Multimodal Knowledge Graphs
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• Relation extraction tasks - additional image helps in attribute 

extraction

o partOf (e.g., The keyboard and the screen are parts of a laptop.)

o colorOf (e.g., A banana is usually yellow or yellowish-green but not 

blue ).

• Text generation tasks - more informative entity-level sentence

 (e.g., Donald Trump is making a speech)

 instead of a vague concept-level description

 (e.g., A tall man with blond hair is making a speech).

Multimodal KGs Benefits
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• Multi-modal Entity Recognition and Linking

• Visual Question Answering

• Image-Text Matching

• Multi-modal Generation Tasks

• Multi-modal Recommender System

MMKGs - Applications
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MMKG with multi-modal data as attribute values
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MMKG with multi-modal data as entities



Associating symbolic knowledge in a traditional KG, including entities, concepts, 

relations, etc., with their corresponding images.

(1) labeling images with symbols in KG

(2) grounding symbols in KG to images

MMKG Construction
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Labelling images after image segmentation
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MMKG Construction



Grounding concepts to images 

MMKG Construction
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• Many large companies and research institutions including OpenAI, Microsoft, 

Huawei trained large very large PTMs based on large-scale unsupervised multi-

modal data.

• CLIP trained on 400 million text-image pairs

o significantly improves the performance of image classification and cross-

modal retrieval.

Pre-Trained Models
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• Most Knowledge Graph embeddings consider entities and their relations only.

• KGs also house valuable entity information in the form of entity attributes, such as 

height, weight, or nationality for a person entity.

• Leveraging this attribute information can empower attribute prediction, facilitating 

the identification of missing features for existing entities.

Starry 
Night

Van Gogh

Oil painting 
medium

creator

movement

Post-impressionism

image

Role of Entity Attributes in multimodal KGs
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• Potentially obtain the semantic representations 

that could facilitate the generation of missing 

modalities.



Role of Entity Attributes in multimodal KGs
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Thank you for your attention. 

Questions and comments are welcome !

Contact

Dr Nitisha Jain

Postdoctoral Researcher Associate

Informatics Department 

King’s College London (KCL)

nitisha.jain@kcl.ac.uk

https://nitishajain.github.io 
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