
Knowledge Graph Representation with Embeddings

1 Introduction

Knowledge graphs (KGs) serve as structured repositories of
real-world facts in the form of triples comprising of entities
and relations. KGs such as Yago and Wikidata (Vrandečić
and Krötzsch 2014) have been applied to a number of ap-
plications including question answering, rule mining and
web search. Knowledge graph embeddings have recently
emerged as a popular technique for representation learn-
ing, where entities and relations are represented by low-
dimensional dense vectors that can capture the interactions
within the knowledge graph and then used for predicting
missing links. Several popular KG embedding models have
been successfully used for the task of link prediction (Wang
et al. 2017). Such models have gained considerable attention
and are being exploited for various other semantic tasks.

2 Semantic Limitations

As the basic premise of KG embeddings is centered around
the semantic relationships between various entities, there is
a widespread notion that embeddings must be able to cap-
ture the semantics and features of KG entities and relations
very well. Embeddings have been, therefore, used for many
similarity-based tasks including entity similarity (Sun et al.
2020) and relation similarity (Kalo, Ehler, and Balke 2019),
as well as conceptual clustering (Gad-Elrab et al. 2020;
Wang et al. 2019).

While the results look promising, none of the previous
works have performed a detailed analysis of the benefits of
the embeddings across different datasets as well as across
different entities within a single dataset. In some cases, a
measurement of the consistency and scalability of the pro-
posed embedding-based approach for different real-world
datasets is largely lacking. The oversight of the limitations
of KG embeddings and emphasis on the success for the sim-
pler cases might prove misleading to research community.

In our recent work (Jain et al. 2021a), we aim to address
this issue by performing a critical study of the characteris-
tics of the latent vectors obtained from several KG embed-
ding models and quantitatively measuring their ability for
semantic representation and learning. The key insight from
our detailed analysis is that while embedding models used
for representation learning of KGs are assumed to encapsu-
late the semantics for entities and relations, in reality their
semantic soundness is severely restricted and highly depen-
dent on the datasets on which they are trained. These find-
ings indicate that a thorough inspection of the advantages
and weaknesses of KG embeddings is necessary when em-
ploying them for semantic tasks.
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Figure 1: Standard embedding pipeline (grey dotted frame) and our
reasoning-based method (black frame) in a nutshell

3 Reasoning-based Embeddings

In spite of their state-of-the-art performance on link predic-
tion task, embedding models can lead to undesirable and
nonsensical predictions (Wiharja et al. 2020) due to the
limitations in the semantic representations for entities and
relations of the KGs. This calls for more goal-oriented
approaches in which ontological reasoning is used to ver-
ify and improve the actual predictions made by embedding
models. To address this issue we proposed to improve the
accuracy of embeddings using ontological reasoning in our
work (Jain et al. 2021b).

The paper proposes an iterative method that dynam-
ically identifies inconsistent predictions produced by a
given embedding model via symbolic reasoning and feeds
them as negative samples for retraining this model. The
method starts with any available negative sampling proce-
dure, e.g., (Kotnis and Nastase 2017; Zhang et al. 2019)
and trains the embedding model as usual. Then, among
predictions made by the model, those that cause inconsis-
tency when being added to the KG are selected as negative
samples for the next iteration of our method. In order to
address the scalability problem that arises when integrating
ontological reasoning into the training process, we proposed
an advanced technique to generalize the inconsistent predic-
tions to other semantically similar negative samples during
retraining.

Our ReasonKGE approach can support any embedding
model, and with the increasing number of iterations it yields
better embeddings that make less inconsistent predictions
and achieve higher prediction accuracy w.r.t. standard met-
rics. Experimental results demonstrated the improvements
in accuracy of facts produced by our method compared
to the state-of-the-art (details in the paper), indicating that
reasoning-based training of embedding models can effec-
tively improve their semantic representation.
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