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Knowledge Graph Embeddings Overview of approach: InterpretE
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InterpretE enables to generate fully interpretable vectors from a given KG and vectors
« Embed components of KG (entities, relations) into continuous vector
spaces. r — N
« Allow easy manipulation of data while preserving inherent structure of so
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» Several popular models - Transg, RESCAL, DistMult, ComplEx, ConvVE...
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semantically meaningful properties. 1011 Knowiedge Graph
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Similar entities cannot be clustered E@ "

together.*

R . . Projection into a new space
*Hubert et. al., Do Similar Entities have Similar Embeddings? ESWC 2024
selecﬁon of '|'he feqfures * For each entity type, the entities having a
specific feature were seperated from others

that did not, using SVM.

 We followed the hypothesis: the most prominent features of an entity in
the KG need to be encapsulated in the corresponding entity embedding. * Each new coordinate related to a feature was

obtained by the decision function (signed

distance from the estimated hyperplane).

 To select the features for different entity types, we performed a
statistical analysis of the KG.
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Example of interpretation of an output vector: the entity Marie Curie &
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National medal Nobel Prize Nobel Prize of ®
Corresponding feature Gender of Science of Physics Chemistry @ North Ameri
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Marie Curie’s new Europe or Asia
embedding
2D projection for gender and American nationality
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The new InterpretE embeddings encapsulate the entity features. : 3 $%°
e Similar entities are clustered together. 2
* High flexible method that can be used with any other KG.
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e Other binary methods (Logistic Regression...) can be tested instead of SVM. -2 -1 0 1 2 3
American nationality
* Scalibility to be tested on bigger datasets.
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