Bringing Back Semantics to Knowledge Graph Embeddings: An Interpretability Approach

Antoine Domingues^{1,2}, Nitisha Jain¹, Albert Meroño Peñuela¹, and Elena Simperl¹

1. Department of Informatics, King's College London, London, UK 2. ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France

Knowledge Graph Embeddings

- Embed components of KG (entities, relations) into continuous vector spaces.
- Allow easy manipulation of data while preserving inherent structure of KG.
- Several popular models TransE, RESCAL, DistMult, ComplEx, ConvE... ۲

Main limitations

- The dimensions of learned vector spaces do not normally correspond to semantically meaningful properties.
- Similar entities cannot be clustered together.*

*Hubert et. al., Do Similar Entities have Similar Embeddings? ESWC 2024

Overview of approach: *InterpretE*

InterpretE enables to generate fully interpretable vectors from a given KG and vectors

Projection into a new space

Selection of the features

- We followed the hypothesis: **the most prominent features of an entity in** the KG need to be encapsulated in the corresponding entity embedding.
- To select the features for different entity types, we performed a statistical analysis of the KG.

Interpretation of the output vectors

Example of interpretation of an output vector: the entity Marie Curie

Corresponding feature	Gender	National medal of Science	Nobel Prize of Physics	 Nobel Prize of Chemistry	
<u>Marie Curie's new</u> <u>embedding</u>	0,85	-1,48	1,4	 2,34	
<u>Coordinate's sign</u>	>0	<0	>0	 >0	_

- For each entity type, the entities having a specific feature were seperated from others that did not, using SVM.
- Each new coordinate related to a feature was obtained by the decision function (signed distance from the estimated hyperplane).

Results

<u>Interpretation</u>	The gender of Marie Curie is female	Marie Curie did not receive the National medal of Science	Marie Curie received the Nobel Prize in Physics		Marie Curie received the Nobel Prize in Chemistry
-----------------------	---	--	--	--	--

Conclusion and Future Work

- The new *InterpretE* embeddings encapsulate the entity features.
- Similar entities are clustered together.
- High flexible method that can be used with any other KG.
- Other binary methods (Logistic Regression...) can be tested instead of SVM.
- Scalibility to be tested on bigger datasets.

Contact:

Nitisha Jain (Postdoctoral Researcher) Informatics Department, King's College London nitisha.jain@kcl.ac.uk, https://nitishajain.github.io

Antoine Domingues (Student) King's College London,

ENSTA Paris, Institut Polytechnique de Paris antoine.domingues@ensta-paris.fr

